Πέμπτη 11 Μαΐου 2017

9-Phenanthrol modulates postinhibitory rebound and afterhyperpolarizing potentials in an excitatory motor neuron of the medicinal leech

Abstract

Postinhibitory rebound (PIR) responses in leech dorsal excitatory motor neurons (cell DE-3) are eliminated by Ca2+ channel blockers but also exhibit a strong dependence on extracellular Na+. These features could be explained by a voltage-gated Ca2+ current acting in concert with a Ca2+-activated nonspecific current (ICAN). In vertebrates, ICAN is associated with TRPM4 channels which are blocked selectively by 9-phenanthrol. Here, we show that 9-phenanthrol selectively inhibits a late phase of PIR and simultaneously enhances afterhyperpolarizing potentials (AHPs). Bath application of NNC 55-0396 or Cd2+ combined with ion substitution experiments indicate that a low-voltage-activated Ca2+ current plays a key role in generating PIR and that Ca2+ influx through low- or high-voltage-activated Ca2+ channels can trigger AHPs via activation of a Ca2+-dependent K+ current. We also demonstrate modulation of rebound responses by other ICAN blockers such as gadolinium and flufenamic acid, as well as the calmodulin antagonist W-7. We discuss how these results provide additional insights into the specific types of ionic currents underlying rebound responses of motor neuron DE-3 in the medicinal leech.



from Physiology via xlomafota13 on Inoreader http://ift.tt/2q6Rxjq
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.