Abstract
The genus Sinocyclocheilus is a representative group of cave creatures. However, genetic studies on Sinocyclocheilus are rare. The primary objective of this study was to explore the structure and feature of the complete mitochondrial genome of S. multipunctatus, and reconstruct the mitogenomic phylogeny of Sinocyclocheilus. The mitochondrial DNA of S. multipunctatus was amplified by overlapping PCR fragments. The mitogenome was assembled by the SeqMan and annotated using MitoAnnotator. The phylogenetic tree was established using the Bayesian inference and Maximum likelihood methods. The mitogenome of S. multipunctatus is a typical circular molecule of 16,586 bp with base composition A (31.25%), T (25.90%), G (16.35%), and C (26.50%), and consists of 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs) genes, two ribosomal RNAs, and a 931 bp control region. Phylogenetic analysis reveals two clades in the Sinocyclocheilus with robust support. S. multipunctatus is close to a newly discovered cavefish, S. ronganensis. We obtained and described the complete mitogenome of S. multipunctatus, and investigated its phylogenetic status, which may provide a valuable resource for future phylogenetic analyses and population genetic studies in Sinocyclocheilus.
from Genetics via xlomafota13 on Inoreader https://ift.tt/2sHGrBN
via IFTTT