Τρίτη 6 Νοεμβρίου 2018

Assessment of a markerless motion analysis system for manual wheelchair application

Wheelchair biomechanics research advances accessibility and clinical care for manual wheelchair users. Standardized outcome assessments are vital tools for tracking progress, but there is a strong need for mor...

from Rehabilitation via xlomafota13 on Inoreader https://ift.tt/2PHUggo
via IFTTT

Speed-adaptive control of functional electrical stimulation for dropfoot correction

Functional electrical stimulation is an important therapy technique for dropfoot correction. In order to achieve natural control, the parameter setting of FES should be associated with the activation of the ti...

from Rehabilitation via xlomafota13 on Inoreader https://ift.tt/2D94lMn
via IFTTT

Manual wheelchair downhill stability: an analysis of factors affecting tip probability

For people who use manual wheelchairs, tips and falls can result in serious injuries including bone fractures, concussions, and traumatic brain injury. We aimed to characterize how wheelchair configuration cha...

from Rehabilitation via xlomafota13 on Inoreader https://ift.tt/2PIVNCD
via IFTTT

Assessment of upper limb use in children with typical development and neurodevelopmental disorders by inertial sensors: a systematic review

Understanding development of bimanual upper limb (UL) activities in both typical and atypical conditions in children is important for: i) tailoring rehabilitation programs, ii) monitoring progress, iii) determ...

from Rehabilitation via xlomafota13 on Inoreader https://ift.tt/2D7YXt5
via IFTTT

Vision-based assessment of parkinsonism and levodopa-induced dyskinesia with pose estimation

Despite the effectiveness of levodopa for treatment of Parkinson's disease (PD), prolonged usage leads to development of motor complications, most notably levodopa-induced dyskinesia (LID). Persons with PD and...

from Rehabilitation via xlomafota13 on Inoreader https://ift.tt/2PGGY3G
via IFTTT

Patient Age Determines Adherence to Preventive Care Measures among Patients with Ulcerative Colitis



from Gastroenterology via xlomafota13 on Inoreader https://ift.tt/2JJ8zfd
via IFTTT

Gastric anisakiasis after eating raw salmon



from Gastroenterology via xlomafota13 on Inoreader https://ift.tt/2yYAPWV
via IFTTT

Patient Age Determines Adherence to Preventive Care Measures among Patients with Ulcerative Colitis



from Gastroenterology via xlomafota13 on Inoreader https://ift.tt/2JJ8zfd
via IFTTT

Gastric anisakiasis after eating raw salmon



from Gastroenterology via xlomafota13 on Inoreader https://ift.tt/2yYAPWV
via IFTTT

Low‐level transcutaneous vagus nerve stimulation attenuates cardiac remodeling in a rat model of heart failure with preserved ejection fraction

New Findings

What is the central question of this study?

In this study, we investigated the effect of chronic intermittent low‐level transcutaneous vagus nerve stimulation on cardiac inflammation, fibrosis and diastolic dysfunction in a rat model of heart failure with preserved ejection fraction.

What is the main finding and its importance?

In salt‐sensitive rats fed with high salt diet, we show that low‐level transcutaneous vagus nerve stimulation significantly attenuates blood pressure elevation, ameliorates diastolic function and attenuates left ventricular inflammation and fibrosis compared to the sham group. Further studies to examine the efficacy of this novel treatment in humans are warranted.

Abstract

Inflammation and fibrosis play a central role in the development of heart failure with preserved ejection fraction (HFpEF). We previously showed that low‐level, transcutaneous stimulation of the vagus nerve at the tragus (LLTS) is anti‐inflammatory. We investigated the effect of chronic intermittent LLTS on cardiac inflammation, fibrosis and diastolic dysfunction in a rat model of HFpEF. Dahl salt‐sensitive (DS) rats were randomized in 3 groups: low salt (LS, 0.3% NaCl; n = 12; control group without stimulation) and high salt (HS, 4% NaCl) with either active (n = 18) or sham (n = 18) LLTS at 7 weeks of age. After 6 weeks of diet (baseline), sham or active LLTS (20 Hz, 2 mA, 0.2 ms) was implemented for 30 minutes daily for 4 weeks. Echocardiography was performed at baseline and 4 weeks after treatment (endpoint). At endpoint, left ventricle (LV) histology and gene expression were examined. After 6 weeks of diets, HS rats developed hypertension and LV hypertrophy compared to LS rats. At endpoint, LLTS significantly attenuated blood pressure elevation, prevented the deterioration of diastolic function and improved LV circumferential strain, compared to the HS sham group. LV inflammatory cell infiltration and fibrosis were attenuated in the HS active compared to the HS sham group. Pro‐inflammatory and pro‐fibrotic genes [tumor necrosis factor, osteopontin, interleukin (IL)‐11, IL‐18 and IL‐23A] were differentially altered in the 2 groups. Chronic intermittent LLTS ameliorates diastolic dysfunction, and attenuates cardiac inflammation and fibrosis in a rat model of HFpEF, suggesting that LLTS may be used clinically as a novel noninvasive neuromodulation therapy in HFpEF.

This article is protected by copyright. All rights reserved



from Physiology via xlomafota13 on Inoreader https://ift.tt/2qyuuwO
via IFTTT

Empirical Comparisons of Different Statistical Models To Identify and Validate Kernel Row Number-Associated Variants from Structured Multi-parent Mapping Populations of Maize

Advances in next generation sequencing technologies and statistical approaches enable genome-wide dissection of phenotypic traits via genome-wide association studies (GWAS). Although multiple statistical approaches for conducting GWAS are available, the power and cross-validation rates of many approaches have been mostly tested using simulated data. Empirical comparisons of single variant (SV) and multi-variant (MV) GWAS approaches have not been conducted to test if a single approach or a combination of SV and MV is effective, through identification and cross-validation of trait-associated loci. In this study, kernel row number (KRN) data were collected from a set of 6,230 entries derived from the Nested Association Mapping (NAM) population and related populations. Three different types of GWAS analyses were performed: 1) single-variant (SV), 2) stepwise regression (STR) and 3) a Bayesian-based multi-variant (BMV) model. Using SV, STR, and BMV models, 257, 300, and 442 KRN-associated variants (KAVs) were identified in the initial GWAS analyses. Of these, 231 KAVs were subjected to genetic validation using three unrelated populations that were not included in the initial GWAS. Genetic validation results suggest that the three GWAS approaches are complementary. Interestingly, KAVs in low recombination regions were more likely to exhibit associations in independent populations than KAVs in recombinationally active regions, probably as a consequence of linkage disequilibrium. The KAVs identified in this study have the potential to enhance our understanding of the genetic basis of ear development.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2yXZ1sr
via IFTTT

Ade2 Functions in the Drosophila Fat Body To Promote Sleep

Metabolic state is a potent modulator of sleep and circadian behavior, and animals acutely modulate their sleep in accordance with internal energy stores and food availability. Across phyla, hormones secreted from adipose tissue act in the brain to control neural physiology and behavior to modulate sleep and metabolic state. Growing evidence suggests the fat body is a critical regulator of complex behaviors, but little is known about the genes that function within the fat body to regulate sleep. To identify molecular factors functioning in non-neuronal tissues to regulate sleep, we performed an RNAi screen selectively knocking down genes in the fat body. We found that knockdown of Phosphoribosylformylglycinamidine synthase/Pfas (Ade2), a highly conserved gene involved the biosynthesis of purines, sleep regulation and energy stores. Flies heterozygous for multiple Ade2 mutations are also short sleepers and this effect is partially rescued by restoring Ade2 to the Drosophila fat body. Targeted knockdown of Ade2 in the fat body does not alter arousal threshold or the homeostatic response to sleep deprivation, suggesting a specific role in modulating baseline sleep duration. Together, these findings suggest Ade2 functions within the fat body to promote both sleep and energy storage, providing a functional link between these processes.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2yXZzyv
via IFTTT

Budding Yeast BFA1 Has Multiple Positive Roles in Directing Late Mitotic Events

The proper regulation of cell cycle transitions is paramount to the maintenance of cellular genome integrity. In Saccharomyces cerevisiae, the mitotic exit network (MEN) is a Ras-like signaling cascade that effects the transition from M phase to G1 during the cell division cycle in budding yeast. MEN activation is tightly regulated. It occurs during anaphase and is coupled to mitotic spindle position by the spindle position checkpoint (SPoC). Bfa1 is a key component of the SPoC and functions as part of a two-component GAP complex along with Bub2. The GAP activity of Bfa1-Bub2 keeps the MEN GTPase Tem1 inactive in cells with mispositioned spindles, thereby preventing inappropriate mitotic exit and preserving genome integrity. Interestingly, a GAP-independent role for Bfa1 in mitotic exit regulation has been previously identified. However the nature of this Bub2-independent role and its biological significance are not understood. Here we show that Bfa1 also activates the MEN by promoting the localization of Tem1 primarily to the daughter spindle pole body (dSPB). We demonstrate that the overexpression of BFA1 is lethal due to defects in Tem1 localization, which is required for its activity. In addition, our studies demonstrate a Tem1-independent role for Bfa1 in promoting proper cytokinesis. Cells lacking TEM1, in which the essential mitotic exit function is bypassed, exhibit cytokinesis defects. These defects are suppressed by the overexpression of BFA1. We conclude that Bfa1 functions to both inhibit and activate late mitotic events.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2OuECQJ
via IFTTT

HO Endonuclease-Initiated Recombination in Yeast Meiosis Fails To Promote Homologous Centromere Pairing and Is Not Constrained To Utilize the Dmc1 Recombinase

Crossover recombination during meiosis is accompanied by a dramatic chromosome reorganization. In Saccharomyces cerevisiae, the onset of meiotic recombination by the Spo11 transesterase leads to stable pairwise associations between previously unassociated homologous centromeres followed by the intimate alignment of homologous axes via synaptonemal complex (SC) assembly. However, the molecular relationship between recombination and global meiotic chromosome reorganization remains poorly understood. In budding yeast, one question is why SC assembly initiates earliest at centromere regions while the DNA double strand breaks (DSBs) that initiate recombination occur genome-wide. We targeted the site-specific HO endonuclease to various positions on S. cerevisiae's longest chromosome in order to ask whether a meiotic DSB's proximity to the centromere influences its capacity to promote homologous centromere pairing and SC assembly. We show that repair of an HO-mediated DSB does not promote homologous centromere pairing nor any extent of SC assembly in spo11 meiotic nuclei, regardless of its proximity to the centromere. DSBs induced en masse by phleomycin exposure likewise do not promote homologous centromere pairing nor robust SC assembly. Interestingly, in contrast to Spo11, HO-initiated interhomolog recombination is not affected by loss of the meiotic kinase, Mek1, and is not constrained to use the meiosis-specific Dmc1 recombinase. These results strengthen the previously proposed idea that (at least some) Spo11 DSBs may be specialized in activating mechanisms that both 1) reinforce homologous chromosome alignment via homologous centromere pairing and SC assembly, and 2) establish Dmc1 as the primary strand exchange enzyme.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2yVvNud
via IFTTT

Combinatorial Genetic Control of Rpd3S Through Histone H3K4 and H3K36 Methylation in Budding Yeast

Much of euchromatin regulation occurs through reversible methylation of histone H3 lysine-4 and lysine-36 (H3K4me and H3K36me). Using the budding yeast Saccharomyces cerevisiae, we previously found that levels of H3K4me modulated temperature sensitive alleles of the transcriptional elongation complex Spt6-Spn1 through an unknown H3K4me effector pathway. Here we identify the Rpd3S histone deacetylase complex as the H3K4me effector underlying these Spt6-Spn1 genetic interactions. Exploiting these Spt6-Spn1 genetic interactions, we show that H3K4me and H3K36me collaboratively impact Rpd3S function in an opposing manner. H3K36me is deposited by the histone methyltransferase Set2 and is known to promote Rpd3S function at RNA PolII transcribed open reading frames. Using genetic epistasis experiments, we find that mutations perturbing the Set2-H3K36me-Rpd3S pathway suppress the growth defects caused by temperature sensitive alleles of SPT6 and SPN1, illuminating that this pathway antagonizes Spt6-Spn1. Using these sensitive genetic assays, we also identify a role for H3K4me in antagonizing Rpd3S that functions through the Rpd3S subunit Rco1, which is known to bind H3 N-terminal tails in a manner that is prevented by H3K4me. Further genetic experiments reveal that the H3K4 and H3K36 demethylases JHD2 and RPH1 mediate this combinatorial control of Rpd3S. Finally, our studies also show that the Rpd3L complex, which acts at promoter-proximal regions of PolII transcribed genes, counters Rpd3S for genetic modulation of Spt6-Spn1, and that these two Rpd3 complexes balance the activities of each other. Our findings present the first evidence that H3K4me and H3K36me act combinatorially to control Rpd3S.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2Osfdaj
via IFTTT

A Drosophila CRISPR/Cas9 Toolkit for Conditionally Manipulating Gene Expression in the Prothoracic Gland as a Test Case for Polytene Tissues

Targeting gene function with spatial or temporal specificity is a key goal in molecular genetics. CRISPR-Cas9 has greatly facilitated this strategy, but some standard approaches are problematic. For instance, simple tissue-specific or global overexpression of Cas9 can cause significant lethality or developmental delays even in the absence of gRNAs. In particular, we found that Gal4-mediated expression of UAS-Cas9 in the Drosophila prothoracic gland (PG) was not a suitable strategy to disrupt gene expression, since Cas9 alone caused widespread lethality. The PG is widely used for studying endocrine gland function during animal development, but tools validating PG-specific RNAi phenotypes are lacking. Here, we present a collection of modular gateway-compatible CRISPR-Cas9 tools that allow precise modulation of target gene activity with temporal and spatial specificity. We also demonstrate that Cas9 fused to the progesterone ligand-binding domain can be used to activate gene expression via RU486. Using these approaches, we were able to avoid the lethality associated with simple GAL4-mediated overexpression of Cas9 in the PG. Given that the PG is a polytene tissue, we conclude that these tools work effectively in endoreplicating cells where Cas9 has to target multiple copies of the same locus. Our toolkit can be easily adapted for other tissues and can be used both for gain- and loss-of-function studies.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2yUxBE2
via IFTTT

Natural Genetic Variation in Yeast Reveals That NEDD4 Is a Conserved Modifier of Mutant Polyglutamine Aggregation

A feature common to late onset proteinopathic disorders is an accumulation of toxic protein conformers and aggregates in affected tissues. In the search for potential drug targets, many studies used high-throughput screens to find genes that modify the cytotoxicity of misfolded proteins. A complement to this approach is to focus on strategies that use protein aggregation as a phenotypic readout to identify pathways that control aggregate formation and maintenance. Here we use natural variation between strains of budding yeast to genetically map loci that influence the aggregation of a polyglutamine-containing protein derived from a mutant form of huntingtin, the causative agent in Huntington disease. Linkage analysis of progeny derived from a cross between wild and laboratory yeast strains revealed two polymorphic loci that modify polyglutamine aggregation. One locus contains the gene RFU1 which modifies ubiquitination states of misfolded proteins targeted by the E3-ubiquitin ligase complex Rsp5. Activity of the Rsp5 complex, and the mammalian homolog NEDD4, are critical in maintaining protein homeostasis in response to proteomic stress. Our analysis also showed linkage of the aggregation phenotype to a distinct locus containing a gene encoding the Rsp5-interacting Bul2 protein. Allele-swap experiments validated the impact of both RFU1 and BUL2 on huntingtin aggregation. Furthermore, we found that the nematode Caenorhabditis elegans' ortholog of Rsp5, wwp-1, also negatively regulates polyglutamine aggregation. Knockdown of the NEDD4 in human cells likewise altered polyglutamine aggregation. Taken together, these results implicate conserved processes involving the ubiquitin regulation network that modify protein aggregation and provide novel therapeutic targets for polyglutamine and other protein folding diseases.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2OwzZ8Z
via IFTTT

Evidence of Zip1 Promoting Sister Kinetochore Mono-orientation During Meiosis in Budding Yeast

Halving of the genome during meiosis I is achieved as the homologous chromosomes move to the opposite spindle poles whereas the sister chromatids stay together and move to the same pole. This requires that the sister kinetochores should take a side-by-side orientation in order to connect to the microtubules emanating from the same pole. Factors that constrain sister kinetochores to adopt such orientation are therefore crucial to achieve reductional chromosome segregation in meiosis I. In budding yeast, a protein complex, known as monopolin, is involved in conjoining of the sister kinetochores and thus facilitates their binding to the microtubules from the same pole. In this study, we report Zip1, a synaptonemal complex component, as another factor that might help the sister kinetochores to take the side-by-side orientation and promote their mono-orientation on the meiosis I spindle. From our results, we propose that the localization of Zip1 at the centromere may provide an additional constraining factor that promotes monopolin to cross-link the sister kinetochores enabling them to mono-orient.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2yUnq2f
via IFTTT

Mushroom Body Specific Transcriptome Analysis Reveals Dynamic Regulation of Learning and Memory Genes After Acquisition of Long-Term Courtship Memory in Drosophila

The formation and recall of long-term memory (LTM) requires neuron activity-induced gene expression. Transcriptome analysis has been used to identify genes that have altered expression after memory acquisition, however, we still have an incomplete picture of the transcriptional changes that are required for LTM formation. The complex spatial and temporal dynamics of memory formation creates significant challenges in defining memory-relevant gene expression changes. The Drosophila mushroom body (MB) is a signaling hub in the insect brain that integrates sensory information to form memories across several different experimental memory paradigms. Here, we performed transcriptome analysis in the MB at two time points after the acquisition of LTM: 1 hr and 24 hr. The MB transcriptome was compared to biologically paired whole head (WH) transcriptomes. In both, we identified more transcript level changes at 1 hr after memory acquisition (WH = 322, MB = 302) than at 24 hr (WH = 23, MB = 20). WH samples showed downregulation of developmental genes and upregulation of sensory response genes. In contrast, MB samples showed vastly different changes in transcripts involved in biological processes that are specifically related to LTM. MB-downregulated genes were highly enriched for metabolic function. MB-upregulated genes were highly enriched for known learning and memory processes, including calcium-mediated neurotransmitter release and cAMP signaling. The neuron activity inducible genes Hr38 and sr were also specifically induced in the MB. These results highlight the importance of sampling time and cell type in capturing biologically relevant transcript level changes involved in learning and memory. Our data suggests that MB cells transiently upregulate known memory-related pathways after memory acquisition and provides a critical frame of reference for further investigation into the role of MB-specific gene regulation in memory.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2OulouG
via IFTTT

Estimating Asian Contribution to the Brazilian Population: A New Application of a Validated Set of 61 Ancestry Informative Markers

Estimates of different ancestral proportions in admixed populations are very important in population genetics studies, especially for the detection of population substructure effects in studies of case-control associations. Brazil is one of the most heterogeneous countries in the world, both from a socio-cultural and a genetic point of view. In this work, we investigated a previously developed set of 61 ancestry informative markers (AIM), aiming to estimate the proportions of four different ancestral groups (African, European, Native American and Asian) in Brazilian populations. To the best of our knowledge, this is the first study to use a set of AIM to investigate the genetic contribution of all four main parental populations to the Brazilian population, including Asian contribution. All selected markers were genotyped through multiplex PCR and capillary electrophoresis. The set was able to successfully differentiate the four ancestral populations (represented by 939 individuals) and identify their genetic contributions to the Brazilian population. In addition, it was used to estimate individual interethnic admixture of 1050 individuals from the Southeast region of Brazil and it showed that these individuals present a higher European ancestry contribution, followed by African, Asian and Native American ancestry contributions. Therefore, the 61 AIM set has proved to be a valuable tool to estimate individual and global ancestry proportions in populations mainly formed by these four groups. Our findings highlight the importance of using sets of AIM to evaluate population substructure in studies carried in admixed populations, in order to avoid misinterpretation of results.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2yXZiLZ
via IFTTT

Reciprocal F1 Hybrids of Two Inbred Mouse Strains Reveal Parent-of-Origin and Perinatal Diet Effects on Behavior and Expression

Parent-of-origin effects (POE) in mammals typically arise from maternal effects or imprinting. In some instances, such POE have been associated with psychiatric disorders, as well as with changes in a handful of animal behaviors. However, POE on complex traits such as behavior remain largely uncharacterized. Moreover, although both behavior and epigenetic effects are known to be modified by perinatal environmental exposures such as nutrient deficiency, the architecture of such environment-by-POE is mostly unexplored. To study POE and environment-by-POE, we employ a relatively neglected but especially powerful experimental system for POE-detection: reciprocal F1 hybrids (RF1s). We exposed female NOD/ShiLtJ$$\times $$C57Bl/6J and C57Bl/6JxNOD/ShiLtJ mice, perinatally, to one of four different diets, then after weaning recorded a set of behaviors that model psychiatric disease. Whole-brain microarray expression data revealed an imprinting-enriched set of 15 genes subject to POE. The most-significant expression POE, on the non-imprinted gene Carmil1 (a.k.a. Lrrc16a), was validated using qPCR in the same and in a new set of mice. Several behaviors, especially locomotor behaviors, also showed POE. Bayesian mediation analysis suggested Carmil1 expression suppresses behavioral POE, and that the imprinted gene Airn suppresses POE on Carmil1 expression. A suggestive diet-by-POE was observed on percent center time in the open field test, and a significant diet-by-POE was observed on one imprinted gene, Mir341, and on 16 non-imprinted genes. The relatively small, tractable set of POE and diet-by-POE detected on behavior and expression here motivates further studies examining such effects across RF1s on multiple genetic backgrounds.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2Owe1mm
via IFTTT

Genomic Analysis To Identify Signatures of Artificial Selection and Loci Associated with Important Economic Traits in Duroc Pigs

Identifying genetic basis of domestication and improvement in livestock contributes to our understanding of the role of artificial selection in shaping the genome. Here we used whole-genome sequencing and the genotyping by sequencing approach to detect artificial selection signatures and identify the associated SNPs of two economic traits in Duroc pigs. A total of 38 candidate selection regions were detected by combining the fixation index and the Composite Likelihood Ratio methods. Further genome-wide association study revealed seven associated SNPs that were related with intramuscular fat content and feed conversion ratio traits, respectively. Enrichment analysis suggested that the artificial selection regions harbored genes, such as MSTN, SOD2, MC5R and CD83, which are responsible for economic traits including lean muscle mass, fertility and immunization. Overall, this study found a series of candidate genes putatively associated with the breeding improvement of Duroc pigs and the polygenic basis of adaptive evolution, which can provide important references and fundamental information for future breeding programs.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2yTwkNu
via IFTTT

Signatures of Insecticide Selection in the Genome of Drosophila melanogaster

Resistance to insecticides has evolved in multiple insect species, leading to increased application rates and even control failures. Understanding the genetic basis of insecticide resistance is fundamental for mitigating its impact on crop production and disease control. We performed a GWAS approach with the Drosophila Genetic Reference Panel (DGRP) to identify the mutations involved in resistance to two widely used classes of insecticides: organophosphates (OPs, parathion) and pyrethroids (deltamethrin). Most variation in parathion resistance was associated with mutations in the target gene Ace, while most variation in deltamethrin resistance was associated with mutations in Cyp6a23, a gene encoding a detoxification enzyme never previously associated with resistance. A "nested GWAS" further revealed the contribution of other loci: Dscam1 and trpl were implicated in resistance to parathion, but only in lines lacking Wolbachia. Cyp6a17, the paralogous gene of Cyp6a23, and CG7627, an ATP-binding cassette transporter, were implicated in deltamethrin resistance. We observed signatures of recent selective sweeps at all of these resistance loci and confirmed that the soft sweep at Ace is indeed driven by the identified resistance mutations. Analysis of allele frequencies in additional population samples revealed that most resistance mutations are segregating across the globe, but that frequencies can vary substantially among populations. Altogether, our data reveal that the widely used OP and pyrethroid insecticides imposed a strong selection pressure on natural insect populations. However, it remains unclear why, in Drosophila, resistance evolved due to changes in the target site for OPs, but due to a detoxification enzyme for pyrethroids.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2OuEC3b
via IFTTT

Discovery of Anthocyanin Acyltransferase1 (AAT1) in Maize Using Genotyping-by-Sequencing (GBS)

The reduced acylation phenotype describes the inability of certain accessions of maize (Zea mays [L.]) to produce significant amounts of acylated anthocyanins, which are typically the most abundant pigments. Acylated anthocyanins are important for their association with stability and are therefore important for the various industries using anthocyanins as natural colorants to replace synthetic dyes. Many anthocyanin acyltransferases have been characterized in other species; however, no anthocyanin acyltransferases have been characterized in maize. Therefore, a mapping population was developed from a cross between mutant stock 707G and wild-type acylation line B73 to identify the locus associated with the reduced acylation trait. High-performance liquid chromatography was used to assay the pigment content and composition of 129 F2 lines generated in the mapping population. Recessive alleles of Colorless1, Colored1, and the reduced acylation mutant all decreased anthocyanin content while Intensifier1 increased anthocyanin content in aleurone tissue. The association of increased proportions of acylation with increased anthocyanin content indicates acylation may be important for increasing the stability of anthocyanins in vivo. Genotyping-by-sequencing was used to create SNP markers to map the reduced acylation locus. In the QTL analysis, a segment of Chromosome 1 containing transferase family protein GRMZM2G387394 was found to be significant. A UniformMu Mu transposon knockout of GRMZM2G387394 demonstrated this gene has anthocyanidin malonyltransferase activity and will therefore be named Anthocyanin Acyltransferase1 (AAT1). AAT1 is the first anthocyanin acyltransferase characterized in a monocot species and will increase our knowledge of all acyltransferase family members.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2yWpjvn
via IFTTT

Hierarchical Assessment of Mutation Properties in Daphnia magna

Understanding the context-dependence of spontaneous mutations is crucial to predicting evolutionary trajectories. In this experiment, the impact of genetic background and trait-type on mutational susceptibility was investigated. Mutant and non-mutant lines of six unique genotypes from two populations of Daphnia magna were phenotypically assayed using a common-garden experiment. Morphological, life-history, and behavioral traits were measured and estimates of the mutation parameters were generated. The mutation parameters varied between the populations and among genotypes, suggesting differential susceptibility to mutation depending upon genomic background. Traits also varied in their susceptibility to mutation with behavioral traits evolving more rapidly than life-history and morphological traits. These results may reflect the unique selection histories of these populations.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2Osl6V7
via IFTTT

Comparing Genome-Wide Association Study Results from Different Measurements of an Underlying Phenotype

Increasing popularity of high-throughput phenotyping technologies, such as image-based phenotyping, offer novel ways for quantifying plant growth and morphology. These new methods can be more or less accurate and precise than traditional, manual measurements. Many large-scale phenotyping efforts are conducted to enable genome-wide association studies (GWAS), but it is unclear exactly how alternative methods of phenotyping will affect GWAS results. In this study we simulate phenotypes that are controlled by the same set of causal loci but have differing heritability, similar to two different measurements of the same morphological character. We then perform GWAS with the simulated traits and create receiver operating characteristic (ROC) curves from the results. The areas under the ROC curves (AUCs) provide a metric that allows direct comparisons of GWAS results from different simulated traits. We use this framework to evaluate the effects of heritability and the number of causative loci on the AUCs of simulated traits; we also test the differences between AUCs of traits with differing heritability. We find that both increasing the number of causative loci and decreasing the heritability reduce a trait's AUC. We also find that when two traits are controlled by a greater number of causative loci, they are more likely to have significantly different AUCs as the difference between their heritabilities increases. When simulation results are applied to measures of tassel morphology, we find no significant difference between AUCs from GWAS using manual and image-based measurements of typical maize tassel characters. This finding indicates that both measurement methods have similar ability to identify genetic associations. These results provide a framework for deciding between competing phenotyping strategies when the ultimate goal is to generate and use phenotype-genotype associations from GWAS.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2yXZ3k3
via IFTTT

Structural Variants and Selective Sweep Foci Contribute to Insecticide Resistance in the Drosophila Genetic Reference Panel

Patterns of nucleotide polymorphism within populations of Drosophila melanogaster suggest that insecticides have been the selective agents driving the strongest recent bouts of positive selection. However, there is a need to explicitly link selective sweeps to the particular insecticide phenotypes that could plausibly account for the drastic selective responses that are observed in these non-target insects. Here, we screen the Drosophila Genetic Reference Panel with two common insecticides; malathion (an organophosphate) and permethrin (a pyrethroid). Genome-wide association studies map survival on malathion to two of the largest sweeps in the D. melanogaster genome; Ace and Cyp6g1. Malathion survivorship also correlates with lines which have high levels of Cyp12d1, Jheh1 and Jheh2 transcript abundance. Permethrin phenotypes map to the largest cluster of P450 genes in the Drosophila genome, however in contrast to a selective sweep driven by insecticide use, the derived allele seems to be associated with susceptibility. These results underscore previous findings that highlight the importance of structural variation to insecticide phenotypes: Cyp6g1 exhibits copy number variation and transposable element insertions, Cyp12d1 is tandemly duplicated, the Jheh loci are associated with a Bari1 transposable element insertion, and a Cyp6a17 deletion is associated with susceptibility.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2OtluSY
via IFTTT

Systems Genetics Approach to Biomarker Discovery: GPNMB and Heart Failure in Mice and Humans

We describe a simple bioinformatics method for biomarker discovery that is based on the analysis of global transcript levels in a population of inbred mouse strains showing variation for disease-related traits. This method has advantages such as controlled environment and accessibility to heart and plasma tissue in the preclinical selection stage. We illustrate the approach by identifying candidate heart failure (HF) biomarkers by overlaying mouse transcriptome and clinical traits from 91 Hybrid Mouse Diversity Panel (HMDP) inbred strains and human HF transcriptome from the Myocardial Applied Genomics Network (MAGNet) consortium. We found that some of the top differentially expressed genes correlated with known human HF biomarkers, such as galectin-3 and tissue inhibitor of metalloproteinase 1. Using ELISA assays, we investigated one novel candidate, Glycoprotein NMB, in a mouse model of chronic β-adrenergic stimulation by isoproterenol (ISO) induced HF. We observed significantly lower GPNMB plasma levels in the ISO model compared to the control group (p-value = 0.007). In addition, we assessed GPNMB plasma levels among 389 HF cases and controls from the METabolic Syndrome In Men (METSIM) study. Lower levels of GPNMB were also observed in patients with HF from the METSIM study compared to non-HF controls (p-value < 0.0001). In summary, we have identified several candidate biomarkers for HF using the cardiac transcriptome data in a population of mice that may be directly relevant and applicable to human populations.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2Os1gsY
via IFTTT

Bulked-Segregant Analysis Coupled to Whole Genome Sequencing (BSA-Seq) for Rapid Gene Cloning in Maize

Forward genetics remains a powerful method for revealing the genes underpinning organismal form and function, and for revealing how these genes are tied together in gene networks. In maize, forward genetics has been tremendously successful, but the size and complexity of the maize genome made identifying mutant genes an often arduous process with traditional methods. The next generation sequencing revolution has allowed for the gene cloning process to be significantly accelerated in many organisms, even when genomes are large and complex. Here, we describe a bulked-segregant analysis sequencing (BSA-Seq) protocol for cloning mutant genes in maize. Our simple strategy can be used to quickly identify a mapping interval and candidate single nucleotide polymorphisms (SNPs) from whole genome sequencing of pooled F2 individuals. We employed this strategy to identify narrow odd dwarf as an enhancer of teosinte branched1, and to identify a new allele of defective kernel1. Our method provides a quick, simple way to clone genes in maize.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2yXYYgf
via IFTTT

Mapping and Sequencing of a Significant Quantitative Trait Locus Affecting Resistance to Koi Herpesvirus in Common Carp

Cyprinids are the most highly produced group of fishes globally, with common carp being one of the most valuable species of the group. Koi herpesvirus (KHV) infections can result in high levels of mortality, causing major economic losses, and is listed as a notifiable disease by the World Organization for Animal Health. Selective breeding for host resistance has the potential to reduce morbidity and losses due to KHV. Therefore, improving knowledge about host resistance and methods of incorporating genomic data into breeding for resistance may contribute to a decrease in economic losses in carp farming. In the current study, a population of 1,425 carp juveniles, originating from a factorial cross between 40 sires and 20 dams was challenged with KHV. Mortalities and survivors were recorded and sampled for genotyping by sequencing using Restriction Site-Associated DNA sequencing (RADseq). Genome-wide association analyses were performed to investigate the genetic architecture of resistance to KHV. A genome-wide significant QTL affecting resistance to KHV was identified on linkage group 44, explaining approximately 7% of the additive genetic variance. Pooled whole genome resequencing of a subset of resistant (n = 60) and susceptible animals (n = 60) was performed to characterize QTL regions, including identification of putative candidate genes and functional annotation of associated polymorphisms. The TRIM25 gene was identified as a promising positional and functional candidate within the QTL region of LG 44, and a putative premature stop mutation in this gene was discovered.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2Osfc6f
via IFTTT

5 things EMS providers need to know about autonomous vehicles

How are these vehicles affecting the roads now, and how might EMS leverage this technology in the near future?

from EMS via xlomafota13 on Inoreader https://ift.tt/2RzbA4q
via IFTTT

Transcriptional regulation of Translocator protein (18 kDa) (TSPO) in microglia requires Pu.1, Ap1 and Sp factors

Publication date: Available online 6 November 2018

Source: Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms

Author(s): Khalid Rashid, Lea Geissl, Anne Wolf, Marcus Karlstetter, Thomas Langmann

Abstract

Mitochondrial Translocator protein (18 kDa) (TSPO) is strongly expressed in reactive microglia and serves as a therapeutic target for alleviation of neuronal degeneration. However, little is known about TSPO's transcriptional regulation in microglia. The aim of this study was to identify genetic elements and transcription factors required for basal and inducible TSPO expression in microglia. Murine Tspo promoter was cloned into the pGL4.10 luciferase vector and functionally characterized in BV-2 cells. Deletion mutagenesis indicated that −845 bases upstream were sufficient to reconstitute near maximal promoter activity in BV-2. Deletion of −593 to −520 sequences, which harbour an Ap1, Ets.2 and Nkx3.1 site which also serves as a non-canonical binding site for Sp1-family transcription factors, led to a dramatic decrease in both basal and LPS induced promoter activity. Further deletion of −168 to −39 sequences, which contains four GC boxes, also led to a significant decrease in promoter activity. Targeted mutations of Ap1, Ets.2, Nkx3.1/Sp1/3/4 and the GC boxes led to significant decreases in promoter activity. ChIP-qPCR revealed that Pu.1, Ap1, Stat3, Sp1, Sp3 and Sp4 bind to the endogenous Tspo promoter. Notably, binding of these factors, with the exception of Stat3, was significantly enhanced upon LPS treatment. RNAi silencing of Pu.1, cJun, cFos, Sp1, Sp3, Sp4 and Stat3 strongly lowered Tspo promoter activity while Ap1 silencing inhibited LPS induced increase in Tspo protein levels. These findings demonstrate that consensus binding sequences for Ap1, Ets.2, distal as well as proximal Sp1/3/4 sites regulate basal and LPS induced Tspo promoter activity in microglia.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2APF6NU
via IFTTT

High dietary intake of palm oils compromises glucose tolerance whereas high dietary intake of olive oil compromises liver lipid metabolism and integrity

European Journal of Nutrition

from Gastroenterology via xlomafota13 on Inoreader https://ift.tt/2Dpa6qb
via IFTTT

Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies

PLoS Medicine

from Gastroenterology via xlomafota13 on Inoreader https://ift.tt/2JILWaz
via IFTTT

Lipid paradox in patients with acute myocardial infarction: Potential impact of malnutrition

Clinical Nutrition

from Gastroenterology via xlomafota13 on Inoreader https://ift.tt/2DrRpSM
via IFTTT

Expected changes in obesity after reformulation to reduce added sugars in beverages: A modeling study

PLoS Medicine

from Gastroenterology via xlomafota13 on Inoreader https://ift.tt/2JILKrR
via IFTTT

Liver stiffness measurements in chronic hepatitis C: Treatment evaluation and risk assessment

Journal of Gastroenterology and Hepatology

from Gastroenterology via xlomafota13 on Inoreader https://ift.tt/2DnFuWh
via IFTTT

Dietary intake, body composition and metabolic parameters in women with polycystic ovary syndrome

Clinical Nutrition

from Gastroenterology via xlomafota13 on Inoreader https://ift.tt/2JOj01b
via IFTTT

Analysis of Brassica napus dehydrins and their Co-Expression regulatory networks in relation to cold stress

Publication date: Available online 6 November 2018

Source: Gene Expression Patterns

Author(s): Khazar Edrisi Maryan, Habibollah Samizadeh Lahiji, Naser Farrokhi, Hassan Hasani Komeleh

Abstract

Dehydrins (DHNs) are plant specific cold and drought stress-responsive proteins that belong to late embryogenesis abundant (LEA) protein families. B. napus DHNs (BnDHNs) were computationally analyzed to establish gene regulatory- and protein-protein interaction networks. Promoter analyses suggested functionality of phytohormones in BnDHNs gene network. The relative expressions of some BnDHNs were analyzed using qRT-PCR in seedling leaves of both cold-tolerant (Zarfam) and -sensitive (Sari Gul) canola treated/untreated by cold. Our expression data were indicative of the importance of BnDHNs in cold tolerance in Zarfam. BnDHNs were classified into three classes according to the expression pattern. Moreover, expression of three BnDHN types, SKn (BnLEA10 and BnLEA18), YnKn (BnLEA90) and YnSKn (BnLEA104) were significantly high in the tolerant cultivar at 12 h of cold treatment. Our findings put forward the possibility of considering these genes as screening biomarker to determine cold-tolerant breeding lines; something that needs to be further corroborated. Furthermore, these genes may have some implications in developing such tolerant lines via transgenesis.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2zvesIe
via IFTTT

Retrospective and perspective of plant epigenetics in China

Publication date: Available online 6 November 2018

Source: Journal of Genetics and Genomics

Author(s): Cheng-Guo Duan, Jian-Kang Zhu, Xiao-Feng Cao

Abstract

Epigenetics refer to the study of heritable changes in gene function that do not involve changes in the DNA sequence. Such effects on cellular and physiological phenotypic traits may result from external or environmental factors or be part of normal developmental program. In eukaryotes, DNA wraps on a histone octamer (two copies of H2A, H2B, H3 and H4) to form nucleosome, the fundamental unit of chromatin. The structure of chromatin is subjected to a dynamic regulation through multiple epigenetic mechanisms, including DNA methylation, histone posttranslational modifications (PTMs), chromatin remodeling and noncoding RNAs. As conserved regulatory mechanisms in gene expression, epigenetic mechanisms participate in almost all the important biological processes ranging from basal development to environmental response. Importantly, all of the major epigenetic mechanisms in mammalians also occur in plants. Plant studies have provided numerous important contributions to the epigenetic research. For example, gene imprinting, a mechanism of parental allele-specific gene expression, was firstly observed in maize; evidence of paramutation, an epigenetic phenomenon that one allele acts in a single locus to induce a heritable change in the other allele, was firstly reported in maize and tomato. Moreover, some unique epigenetic mechanisms have been evolved in plants. For example, the 24-nt siRNA-involved RNA-directed DNA methylation (RdDM) pathway is plant-specific because of the involvements of two plant-specific DNA-dependent RNA polymerases, Pol IV and Pol V. A thorough study of epigenetic mechanisms is of great significance to improve crop agronomic traits and environmental adaptability. In this review, we make a brief summary of important progresses achieved in plant epigenetics field in China over the past several decades and give a brief outlook on future research prospects. We focus our review on DNA methylation and histone PTMs, the two most important aspects of epigenetic mechanisms.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2DpgMVC
via IFTTT

Conservation genetics and genomics of threatened vertebrates in China

Publication date: Available online 5 November 2018

Source: Journal of Genetics and Genomics

Author(s): Huizhong Fan, Yibo Hu, Qi Wu, Yonggang Nie, Li Yan, Fuwen Wei

Abstract

Conservation genetics and genomics are two independent disciplines that focus on using new techniques in genetics and genomics to solve problems in conservation biology. During the past two decades, conservation genetics and genomics have experienced rapid progress. Here, we summarize the research advances in the conservation genetics and genomics of threatened vertebrates (e.g., carnivoran, primates, ungulates, cetaceans, avians, amphibians and reptiles) in China. First, we introduce the concepts of conservation genetics and genomics and their development. Second, we review the recent advances in conservation genetics research, including noninvasive genetics and landscape genetics. Third, we summarize the progress in conservation genomics research, which mainly focuses on resolving genetic problems relevant to conservation such as genetic diversity, genetic structure, demographic history, and genomic evolution and adaptation. Finally, we discuss the future directions of conservation genetics and genomics.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2JGKR2Y
via IFTTT

The molecular and evolutionary basis of reproductive isolation in plants

Publication date: Available online 5 November 2018

Source: Journal of Genetics and Genomics

Author(s): Yidan Ouyang, Qifa Zhang

ABSTRACT

Reproductive isolation is defined as processes that prevent individuals of different populations from mating, survival or producing fertile offspring. Reproductive isolation is critical for driving speciation and maintaining species identity, which has been a fundamental concern in evolutionary biology. In plants, reproductive isolation can be divided into prezygotic reproductive barriers and postzygotic reproductive barriers, according to its occurrence at different developmental stages. Postzygotic reproductive isolation that caused by reduced fitness in hybrids is frequently observed in plants, which hinders gene flow between divergent populations and has substantial effects on genetic differentiation and speciation, and thus is a major obstacle for utilization of heterosis in hybrid crops. During the past decade, China had made tremendous progress in molecular and evolutionary basis of prezygotic and postzygotic reproductive barriers in plants. Present understandings in reproductive isolation especially with new data in the last several years well support three evolutionary genetic models, which represent a general mechanism underlying genomic differentiation and speciation. The updated understanding will offer new approaches for the development of wide-compatibility or neutral varieties, which facilitate breeding of hybrid rice as well as other hybrid crops.



from Genetics via xlomafota13 on Inoreader https://ift.tt/2DoUH9n
via IFTTT

Exaggerated systemic oxidative‐nitrosative‐inflammatory stress in chronic mountain sickness is associated with cognitive decline and depression

The Journal of Physiology, Volume 0, Issue ja, -Not available-.


from Physiology via xlomafota13 on Inoreader https://ift.tt/2FiBJmX
via IFTTT