Publication date: Available online 23 February 2019
Source: Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
Author(s): Vishantie Dostal, Mair E.A. Churchill
Abstract
In eukaryotes, cytosine methylation of nuclear DNA at CpG sequences (5mCpG) regulates epigenetic inheritance through alterations in chromatin structure. However, mitochondria lack nucleosomal chromatin, therefore the molecular mechanisms by which 5mCpG influences mitochondria must be different and are as yet unknown. Mitochondrial Transcription Factor A (TFAM) is both the primary DNA-compacting protein in the mitochondrial DNA (mtDNA) nucleoid and a transcription-initiation factor. TFAM must encounter hundreds of CpGs in mtDNA, so the occurrence of 5mCpG has the potential to impact TFAM-DNA recognition. We used biophysical approaches to determine whether 5mCpG alters any TFAM-dependent activities. 5mCpG in the heavy strand promoter (HSP1) increased the binding affinity of TFAM and induced TFAM multimerization with increased cooperativity compared to nonmethylated DNA. However, 5mCpG had no apparent effect on TFAM-dependent DNA compaction. Additionally, 5mCpG had a clear and context-dependent effect on transcription initiating from the three mitochondrial promoters. Taken together, our findings demonstrate that 5mCpG in the mitochondrial promoter region does impact TFAM-dependent activities in vitro.
from Genetics via xlomafota13 on Inoreader https://ift.tt/2GKOg23
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.