Abstract
Background and Aims
Concanavalin A is known to activate T cells and to cause liver injury and hepatitis, mediated in part by secretion of TNFα from macrophages. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors have been shown to prevent tissue damage in various animal models of inflammation. The objectives of this study were to evaluate the efficacy and mechanism of the PARP-1 inhibitor 3-aminobenzamide (3-AB) in preventing concanavalin A-induced liver damage.
Methods
We tested the in vivo effects of 3-AB on concanavalin A-treated mice, its effects on lipopolysaccharide (LPS)-stimulated macrophages in culture, and its ability to act as a scavenger in in vitro assays.
Results
3-AB markedly reduced inflammation, oxidative stress, and liver tissue damage in concanavalin A-treated mice. In LPS-stimulated RAW264.7 macrophages, 3-AB inhibited NFκB transcriptional activity and subsequent expression of TNFα and iNOS and blocked NO production. In vitro, 3-AB acted as a hydrogen peroxide scavenger. The ROS scavenger N-acetylcysteine (NAC) and the ROS formation inhibitor diphenyleneiodonium (DPI) also inhibited TNFα expression in stimulated macrophages, but unlike 3-AB, NAC and DPI were unable to abolish NFκB activity. PARP-1 knockout failed to affect NFκB and TNFα suppression by 3-AB in stimulated macrophages.
Conclusions
Our results suggest that 3-AB has a therapeutic effect on concanavalin A-induced liver injury by inhibiting expression of the key pro-inflammatory cytokine TNFα, via PARP-1-independent NFκB suppression and via an NFκB-independent anti-oxidative mechanism.
from Gastroenterology via xlomafota13 on Inoreader https://ift.tt/2McW1MF
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.