Models have been constructed to estimate individual risk for global cognitive impairment in Parkinson's disease (PD) using a small set of clinical predictor variables (age at disease onset, sex, education, MMSE, motor impairment, depression) (Liu et al., 2017). The prediction algorithm accurately forecast cognitive decline with a predefined cut-off score. Slowing of the electroencephalogram (EEG) is frequent in PD and as it is a predictive biomarker for dementia in PD (PDD), it is likely that adding information about EEG frequency might increase predictive accuracy of cognitive decline.
from Physiology via xlomafota13 on Inoreader https://ift.tt/2ulKm7c
via IFTTT
Δευτέρα 9 Ιουλίου 2018
P77. Prognosis of cognitive decline in Parkinsons disease: a combined marker of quantitative EEG and clinical variables improves prediction
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.