Abstract
Visually guided flight control requires processing changes in the visual panorama (optic-flow) resulting from self-movement relative to stationary objects, as well as from moving objects passing through the field of view. We studied the ability of the blue-tailed damselfly, Ischnura elegans, to successfully land on a perch moving unpredictably. We tracked the insects landing on a vertical pole moved linearly 6 cm back and forth with sinusoidal changes in velocity. When the moving perch changed direction at frequencies higher than 1 Hz, the damselflies engaged in manoeuvres that typically involved sideways flight, with minimal changes in body orientation relative to the stationary environment. We show that these flight manoeuvres attempted to fix the target in the centre of the field of view when flying in any direction while keeping body rotation changes about the yaw axis to the minimum. We propose that this pursuit strategy allows the insect to obtain reliable information on self and target motion relative to the stationary environment from the translational optic-flow, while minimizing interference from the rotational optic-flow. The ability of damselflies to fly in any direction, irrespective of body orientation, underlines the superb flight control of these aerial predators.
from Physiology via xlomafota13 on Inoreader https://ift.tt/2H6oAxC
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.