Abstract
ADP ribosylation factors (ARFs), one group within the Ras superfamily of GTP-binding proteins, are ubiquitous within the eukaryotic kingdom. The functions of ARFs are extensive, and include regulatory roles in vesicular transportation, lipid metabolism, and microtubule dynamics, and the cellular processes related to these roles. Most ARFs have been identified from mammalian species and yeast; although little is known about the functional importance of ARFs in plants, it seems to be equally diverse and significant. We have been working on plant responses under heat stress, and showed that heat-shock can induce seed germination (Koo et al. in Plant Physiol 167:1030–1038, 2015). In the present study, we report nine ARF gene family members from tobacco (Nicotiana tabacum), all belonging to the same group (Class 1) in the phylogenetic analysis. One family member, NtARF1, was induced under high-temperature stress. To elucidate the biological function of NtARF1, we generated transgenic tobacco plants overexpressing NtARF1 and the seeds of these transgenic tobacco plants germinated earlier than the seeds of non-transgenic tobacco plants. We also classified ARF family genes in plant species through systematic genomic DNA sequence data-mining, focusing on the fully sequenced and extensively annotated genomes of Arabidopsis thaliana, Brachypodium distachyon, Medicago truncatula, Mimulus guttatus, Nicotiana benthamiana, Setaria italica, Solanum lycopercisum, and Solanum tuberosum, and of some major crops including rice, soybean, corn, and tobacco. The Class 1 of our phylogenetics analysis comprised the highest number of ARFs among the four groups obtained for all plant species analyzed, especially for crop plant species.
from Genetics via xlomafota13 on Inoreader http://ift.tt/2uh11qo
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.