Publication date: March 2019
Source: Journal of Environmental Radioactivity, Volume 198
Author(s): R. Periáñez, R. Bezhenar, I. Brovchenko, K.T. Jung, Y. Kamidara, K.O. Kim, T. Kobayashi, L. Liptak, V. Maderich, B.I. Min, K.S. Suh
Abstract
A number of marine radionuclide dispersion models (both Eulerian and Lagrangian) were applied to simulate 137Cs releases from Fukushima Daiichi nuclear power plant accident in 2011 over the Pacific at oceanic scale. Simulations extended over two years and both direct releases into the ocean and deposition of atmospheric releases on the ocean surface were considered. Dispersion models included an embedded biological uptake model (BUM). Three types of BUMs were used: equilibrium, dynamic and allometric. Model results were compared with 137Cs measurements in water (surface, intermediate and deep layers), sediment and biota (zooplankton, non-piscivorous and piscivorous fish). A reasonable agreement in model/model and model/data comparisons was obtained.
from Radiology via xlomafota13 on Inoreader http://bit.ly/2CQpzOy
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.