Παρασκευή 16 Μαρτίου 2018

Learning what matters: A neural explanation for the sparsity bias

Publication date: Available online 15 March 2018
Source:International Journal of Psychophysiology
Author(s): Cameron D. Hassall, Patrick C. Connor, Thomas P. Trappenberg, John J. McDonald, Olave E. Krigolson
The visual environment is filled with complex, multi-dimensional objects that vary in their value to an observer's current goals. When faced with multi-dimensional stimuli, humans may rely on biases to learn to select those objects that are most valuable to the task at hand. Here, we show that decision making in a complex task is guided by the sparsity bias: the focusing of attention on a subset of available features. Participants completed a gambling task in which they selected complex stimuli that varied randomly along three dimensions: shape, color, and texture. Each dimension comprised three features (e.g., color: red, green, yellow). Only one dimension was relevant in each block (e.g., color), and a randomly-chosen value ranking determined outcome probabilities (e.g., green > yellow > red). Participants were faster to respond to infrequent probe stimuli that appeared unexpectedly within stimuli that possessed a more valuable feature than to probes appearing within stimuli possessing a less valuable feature. Event-related brain potentials recorded during the task provided a neurophysiological explanation for sparsity as a learning-dependent increase in optimal attentional performance (as measured by the N2pc component of the human event-related potential) and a concomitant learning-dependent decrease in prediction errors (as measured by the feedback-elicited reward positivity). Together, our results suggest that the sparsity bias guides human reinforcement learning in complex environments.



from Physiology via xlomafota13 on Inoreader http://ift.tt/2FYur6I
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.