Abstract
The fetus and the placenta in eutherian mammals have a unique set of compensatory mechanisms to respond to several pregnancy complications including chronic maternal hypoxia. This study examined the structural adaptations of the feto- and utero-placental vasculature in an experimental mouse model of chronic maternal hypoxia (11% O2 from E14.5-E17.5). While placental weights were unaffected by exposure to chronic hypoxia, using micro-computed tomography, we found a 44% decrease in the absolute feto-placental arterial vascular volume and a 30% decrease in total vessel segments in the chronic hypoxia compared to control group. Scanning electron microscopy imaging showed significant expansion of the capillary network; consequently, the interhemal membrane was 11% thinner to facilitate maternal-fetal exchange in the chronic hypoxia placentas. One of the mechanisms for the rapid capillary expansion was intussusceptive angiogenesis. Analysis of the utero-placental arterial tree showed significant increases (24%) in the diameter of the radial arteries, resulting in a decrease in the total utero-placental resistance by 2.6-fold in the mice exposed to chronic maternal hypoxia. Together these adaptations acted to preserve placental weight whereas fetal weight was decreased.
This article is protected by copyright. All rights reserved
from Physiology via xlomafota13 on Inoreader http://ift.tt/2eKhTkJ
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.