Unilateral arm movements require trunk stabilization through bilateral contraction of axial muscles. Interhemispheric interactions between primary motor cortices (M1) could enable such coordinated contractions, but these mechanisms are largely unknown. Using transcranial magnetic stimulation (TMS), we characterized interhemispheric interactions between M1 representations of the trunk-stabilizing muscles erector spinae at the first lumbar vertebra (ES L1) during a right isometric shoulder flexion. These interactions were compared with those of the anterior deltoid (AD), the main agonist in this task, and the first dorsal interosseous (FDI). TMS over the right M1 elicited ipsilateral silent periods (iSP) in all three muscles on the right side. In ES L1, but not in AD or FDI, ipsilateral motor evoked potential (iMEP) could precede the iSP or replace it. iMEP amplitude was not significantly different whether ES L1 was used to stabilize the trunk or was voluntarily contracted. TMS at the cervicomedullary junction showed that the size of cervicomedullary evoked potential was unchanged during the iSP but increased during iMEP, suggesting that the iSP, but not the iMEP, is due to intracortical mechanisms. Using a dual-coil paradigm with two coils over the left and right M1, interhemispheric inhibition could be evoked at interstimulus intervals of 6 ms in ES L1 and 8 ms in AD and FDI. Together, these results suggest that interhemispheric inhibition is dominant when axial muscles are involved in a stabilizing task. The ipsilateral facilitation could be evoked by ipsilateral or subcortical pathways and could be used depending on the role axial muscles play in the task.
NEW & NOTEWORTHY The mechanisms involved in the bilateral coordination of axial muscles during unilateral arm movement are poorly understood. We thus investigated the nature of interhemispheric interactions in axial muscles during arm motor tasks in healthy subjects. By combining different methodologies, we showed that trunk muscles receive both inhibitory and facilitatory cortical outputs during activation of arm muscles. We propose that inhibition may be conveyed mainly through interhemispheric mechanisms and facilitation by subcortical mechanisms or ipsilateral pathways.
from Physiology via xlomafota13 on Inoreader http://ift.tt/2vQ3aKJ
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.