Oncolytic viruses selectively lyse tumor cells, disrupt immunosuppression within the tumor and reactivate anti-tumor immunity, but they have yet to live up to their therapeutic potential. Immune checkpoint modulation has been efficacious in a variety of cancer with an immunogenic microenvironment, but is associated with toxicity due to nonspecific T-cell activation. Therefore, combining these two strategies would likely result in both effective and specific cancer therapy. To test the hypothesis, we first constructed oncolytic adenovirus Delta-24-RGDOX expressing the immune co-stimulator OX40 ligand (OX40L). Like its predecessor Delta-24-RGD, Delta-24-RGDOX induced immunogenic cell death and recruit lymphocytes to the tumor site. Compared to Delta-24-RGD, Delta-24-RGDOX exhibited superior tumor-specific activation of lymphocytes and proliferation of CD8+ T cells specific to tumor-associated antigens, resulting in cancer-specific immunity. Delta-24-RGDOX mediated more potent anti-glioma activity in immune-competent C57BL/6 but not immune-deficient athymic mice, leading to specific immune memory against the tumor. In order to further overcome the immune suppression mediated by programmed death-ligand 1 (PD-L1) expression on cancer cells accompanied with virotherapy, intratumoral injection of Delta-24-RGDOX and an anti-PD-L1 antibody showed synergistic inhibition of gliomas and significantly increased survival in mice. Our data demonstrate that combining an oncolytic virus with tumor-targeting immune checkpoint modulators elicits potent in situ autologous cancer vaccination, resulting in an efficacious, tumor-specific and long-lasting therapeutic effect.
from #ORL-AlexandrosSfakianakis via ola Kala on Inoreader http://ift.tt/2qCJeJx
via IFTTT
Τετάρτη 31 Μαΐου 2017
Oncolytic adenovirus and tumor-targeting immune modulatory therapy improve autologous cancer vaccination
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.