Background: Schizophrenia is a debilitating psychiatric disorder manifested in early adulthood. Disrupted-In-Schizophrenia-1 (DISC1) is a susceptible gene for schizophrenia (54, 76, 101) implicated in neuronal development, brain maturation and neuroplasticity (12, 20). Therefore, DISC1 is a promising candidate gene for schizophrenia, but the molecular mechanisms underlying its role in the pathogenesis of the disease are still poorly understood. Interestingly, Caveolin-1 (Cav-1), a cholesterol binding and scaffolding protein, regulates neuronal signal transduction and promotes neuroplasticity. Here we examined the role of Cav-1 in mediating DISC1 expression in neurons in vitro and the hippocampus in vivo. Methods and Results: Overexpressing Cav-1 specifically in neurons using a neuron specific synapsin promoter (SynCav1) increased expression of DISC1 and proteins involved in synaptic plasticity (PSD95, synaptobrevin, synaptophysin, neurexin, and syntaxin-1). Similarly, SynCav1-transfected differentiated human neurons derived from induced pluripotent stem cells (hiPSCs) exhibited increased expression of DISC1 and markers of synaptic plasticity. Conversely, hippocampi from Cav-1 knockout (KO) exhibited decreased expression of DISC1 and proteins involved in synaptic plasticity. Finally, SynCav1 delivery to the hippocampus of Cav-1 KO mice and Cav-1 KO neurons in culture restored expression of DISC1 and markers of synaptic plasticity. Furthermore, we found that Cav-1 co-immunoprecipitated with DISC1 in brain tissues. Conclusion: These findings suggest an important role by which neuronal Cav-1 regulates DISC1 neurobiology with implications for synaptic plasticity. Therefore, SynCav1 might be a potential therapeutic target for restoring neuronal function in schizophrenia.
from Physiology via xlomafota13 on Inoreader http://ift.tt/2f3647v
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.