Publication date: Available online 26 December 2018
Source: Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
Author(s): Kuan-Wei Hsu, Sih-Yao Chow, Bo-Yu Su, Yi-Han Lu, Cyuan-Ji Chen, Wen-Ling Chen, Ming-Yuan Cheng, Hsiu-Fang Fan
Abstract
Eukaryotes have evolved a specific strategy to package DNA. The nucleosome is a 147-base-pair DNA segment wrapped around histone core proteins that plays important roles regulating DNA-dependent biosynthesis and gene expression. Chromatin remodeling complexes (RSC, Remodel the Structure of Chromatin) hydrolyze ATP to perturb DNA-histone contacts, leading to nucleosome sliding and ejection. Here, we utilized tethered particle motion (TPM) experiments to investigate the mechanism of RSC-mediated nucleosome remodeling in detail. We observed ATP-dependent RSC-mediated DNA looping and nucleosome ejection along individual mononucleosomes and dinucleosomes. We found that nucleosome assembly protein 1 (Nap1) enhanced RSC-mediated nucleosome ejection in a two-step disassembly manner from dinucleosomes but not from mononucleosomes. Based on this work, we provide an entire reaction scheme for the RSC-mediated nucleosome remodeling process that includes DNA looping, nucleosome ejection, the influence of adjacent nucleosomes, and the coordinated action between Nap1 and RSC.
from Genetics via xlomafota13 on Inoreader http://bit.ly/2ET7cee
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.