Publication date: Available online 11 December 2018
Source: Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
Author(s): Veijo Nurminen, Antonio Neme, Sabine Seuter, Carsten Carlberg
Abstract
The myeloid master regulator CCAAT enhancer-binding protein alpha (CEBPA) is known as a pioneer factor. In this study, we report the CEBPA cistrome of THP-1 human monocytes after stimulation with the vitamin D receptor (VDR) ligand 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) for 2, 8 and 24 h. About a third of the genomic VDR binding sites co-located with those of CEBPA. In parallel, the binding strength of 5% of the CEBPA cistrome, i.e. some 1500 sites, is significantly (p < 0.001) affected by 1,25(OH)2D3. Transcriptome-wide analysis after CEBPA silencing indicated that the pioneer factor enhances both the basal expression and ligand inducibility of 70 vitamin D target genes largely involved in lipid signaling and metabolism. In contrast, CEBPA suppresses 82 vitamin D target genes many of which are related to the modulation of T cell activity by monocytes. The inducibility of the promoter-specific histone marker H3K4me3 distinguishes the former class of genes from the latter. Moreover, prominent occupancy of the myeloid pioneer factor PU.1 on 1,25(OH)2D3-sensitive CEBPA enhancers mechanistically explains the dichotomy of vitamin D target genes. In conclusion, CEBPA supports vitamin D signaling concerning actions of the innate immune system, but uses the antagonism with PU.1 for suppressing possible overreactions of adaptive immunity.
from Genetics via xlomafota13 on Inoreader https://ift.tt/2zW1t39
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.