X‐Linked Intellectual Disability (XLID) refers to a clinically and genetically heterogeneous neurodevelopmental disorder, in which males are more heavily affected than females. Among the syndromic forms of XLID, identified by additional clinical signs as part of the disease spectrum, the association between XLID and severe myopia has been poorly characterized.
We used Whole Exome Sequencing (WES) to study two Italian male twins presenting impaired intellectual function and adaptive behavior, in association with severe myopia and mild facial dysmorphisms. WES analysis detected the novel, maternally inherited, mutation c.916G>C (G306R) in the X‐linked Heparan Sulfate 6‐O‐ Sulfotransferase 2 (HS6ST2) gene. HS6ST2 transfers sulphate from adenosine 3'‐phosphate, 5'‐phosphosulphate (PAPS) to the 6th position of the N‐sulphoglucosamine (GlcNS) residue in Heparan Sulfate (HS) proteoglycans. Low HS sulfation levels are associated with defective optic disc and stalk morphogenesis during mammalian visual system development. The c.916G>C variant affects the HS6ST2 substrate binding site and its effect was considered "deleterious" by in‐silico tools. An In‐vitro enzymatic assay showed that the HS6ST2 mutant isoform had significantly reduced sulphotransferase activity.
Taken together, the results suggest that mutant HS6ST2 is possibly involved in the development of myopia and cognitive impairment, characteristics of the probands reported here.
This article is protected by copyright. All rights reserved.
from Genetics via xlomafota13 on Inoreader https://ift.tt/2FGuLIq
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.