Publication date: June 2018
Source: Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, Volume 1861, Issue 6
Author(s): Radha Charan Dash, Angela M. Zaino, M. Kyle Hadden
Abstract
The binding affinity between the histone 3 (H3) tail and the ADD domain of ATRX (ATRXADD) increases with the subsequent addition of methyl groups on lysine 9 on H3. To improve our understanding of how the difference in methylation state affects binding between H3 and the ATRXADD, we adopted a metadynamic approach to explore the recognition mechanism between the two proteins and identify the key intermolecular interactions that mediate this protein-peptide interaction (PPI). The non-methylated H3 peptide is recognized only by the PHD finger of ATRXADD while mono-, di-, and trimethylated H3 is recognized by both the PHD and GATA-like zinc finger of the domain. Furthermore, water molecules play an important role in orienting the lysine 9 anchor towards the GATA-like zinc finger, which results in stabilizing the lysine 9 binding pocket on ATRXADD. We compared our computational results against experimentally determined NMR and X-ray structures by demonstrating the RMSD, order parameter S2 and hydration number of the complex. The metadynamics data provide new insight into roles of water-bridges and the mechanisms through which K9 hydration stabilizes the H3K9me3:ATRXADD PPI, providing context for the high affinity demonstrated between this protein and peptide.
Graphical abstract
from Genetics via xlomafota13 on Inoreader https://ift.tt/2IVbiQJ
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.