Abstract
Purpose
To document the magnitude and time course of human Achilles tendon adaptations (i.e. changes in tendon morphological and mechanical properties) during a 12-week high-load plantar flexion training program.
Methods
Ultrasound was used to determine Achilles tendon cross-sectional area (CSA), length and elongation as a function of plantar flexion torque during voluntary plantar flexion. Tendon force–elongation and stress–strain relationships were determined before the start of training (pre-training) and after 4 (post-4), 8 (post-8) and 12 (post-12) training weeks.
Results
At the end of the training program, maximum isometric force had increased by 49% and tendon CSA by 17%, but tendon length, maximal tendon elongation and maximal strain were unchanged. Hence, tendon stiffness had increased by 82%, and so had Young's modulus, by 86%. Significant changes were first detected at post-4 in stiffness (51% increase) and Young's modulus (87% increase), and at post-8 in CSA (15% increase).
Conclusions
Achilles tendon material properties already improved after 4 weeks of high-load training: stiffness increased while CSA remained unchanged. Tendon hypertrophy (increased CSA) was observed after 8 training weeks and contributed to a further increase in Achilles tendon stiffness, but tendon stiffness increases were mostly caused by adaptations in tissue properties.
from Physiology via xlomafota13 on Inoreader https://ift.tt/2JkoZNo
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.