BACKGROUND: Cytochrome aa3, the terminal component of the electron transport chain, absorbs near-infrared radiation (NIR) differentially depending on its oxidation state (Cytox), which can in theory be measured using near-infrared spectroscopy (NIRS) by relating light absorption at specific wavelengths to chromophore concentrations. Some NIRS algorithms use discrete wavelengths, while others analyze a band of NIR (broadband NIRS). The purpose of this study was to test the ability of discrete wavelength and broadband algorithms to measure changes in Cytox (primary outcome), and to determine whether or not a discreet wavelength NIRS algorithm could perform similarly to a broadband NIRS algorithm for the measurement of Cytox in a staged hypoxia–cyanide model (hypoxia and cyanide have oppositional effects on tissue saturation, but both cause cytochrome reduction). METHODS: Twenty Sprague-Dawley rats were anesthetized with isoflurane, intubated, and instrumented. Blood pressure, end-tidal carbon dioxide, and arterial oxygen saturation were measured. A halogen light source transmitted NIR transcranially. NIR from the light source and the skull was transmitted to 2 cooled charge-coupled device spectrometers. Rats were subjected to anoxia (fraction of inspired oxygen, 0.0) until arterial oxygen saturation decreased to 70%. After recovery, 5 mg/kg sodium cyanide was injected intravenously. The cycle was repeated until cardiac arrest occurred. Relative concentrations of hemoglobin and cytochrome aa3 were calculated using discreet wavelength and broadband NIRS algorithms. RESULTS: Hypoxia led to an increase in calculated deoxyhemoglobin (0.20 arbitrary units [AUs]; 95% confidence interval [CI], 0.17–0.22; P
from Anaesthesiology via xlomafota13 on Inoreader https://ift.tt/2JPhcIt
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.