Publication date: March 2018
Source:Clinical Neurophysiology, Volume 129, Issue 3
Author(s): Viateur Tuyisenge, Lena Trebaul, Manik Bhattacharjee, Blandine Chanteloup-Forêt, Carole Saubat-Guigui, Ioana Mîndruţă, Sylvain Rheims, Louis Maillard, Philippe Kahane, Delphine Taussig, Olivier David
ObjectiveIntracranial electroencephalographic (iEEG) recordings contain "bad channels", which show non-neuronal signals. Here, we developed a new method that automatically detects iEEG bad channels using machine learning of seven signal features.MethodsThe features quantified signals' variance, spatial–temporal correlation and nonlinear properties. Because the number of bad channels is usually much lower than the number of good channels, we implemented an ensemble bagging classifier known to be optimal in terms of stability and predictive accuracy for datasets with imbalanced class distributions. This method was applied on stereo-electroencephalographic (SEEG) signals recording during low frequency stimulations performed in 206 patients from 5 clinical centers.ResultsWe found that the classification accuracy was extremely good: It increased with the number of subjects used to train the classifier and reached a plateau at 99.77% for 110 subjects. The classification performance was thus not impacted by the multicentric nature of data.ConclusionsThe proposed method to automatically detect bad channels demonstrated convincing results and can be envisaged to be used on larger datasets for automatic quality control of iEEG data.SignificanceThis is the first method proposed to classify bad channels in iEEG and should allow to improve the data selection when reviewing iEEG signals.
from Physiology via xlomafota13 on Inoreader http://ift.tt/2FUneB8
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.