Δευτέρα 20 Νοεμβρίου 2017

A Deconvolution Protocol for ChIP-Seq Reveals Analogous Enhancer Structures on the Mouse and Human Ribosomal RNA Genes

The combination of Chromatin Immunoprecipitation and Massively Parallel Sequencing, or ChIP-Seq, has greatly advanced our genome-wide understanding of chromatin and enhancer structures. However, its resolution at any given genetic locus is limited by several factors. In applying ChIP-Seq to the study of the ribosomal RNA genes, we found that a major limitation to resolution was imposed by the underlying variability in sequence coverage that very often dominates the protein-DNA interaction profiles. Here we describe a simple numerical deconvolution approach that in large part corrects for this variability and significantly improves both the resolution and quantitation of protein-DNA interaction maps deduced from ChIP-Seq data. This approach has allowed us to determine the in vivo organization of the RNA Polymerase I preinitiation complexes that form at the promoters and enhancers of the mouse (Mus musculus) and human (Homo sapiens) ribosomal RNA genes, and to reveal a phased binding of the HMG-box factor UBF across the rDNA. The data identify and map a "Spacer Promoter" and associated stalled polymerase in the Intergenic Spacer of the human ribosomal RNA genes, and reveal a very similar Enhancer structure to that found in rodents and lower vertebrates.



from Genetics via xlomafota13 on Inoreader http://ift.tt/2hRrdb3
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.