Erythrocytes are vital to human adaptation under hypoxic conditions because of their abundance in number and irreplaceable function of delivering oxygen (O2). However, although multiple large-scale altitude studies investigating the overall coordination of the human body for hypoxia adaptation have been conducted, detailed research with a focus on erythrocytes was missing due to lack of proper techniques. The recently maturing metabolomics profiling technology appears to be the answer to this limitation. Metabolomics profiling provides unbiased high-throughput screening data that reveal the overall metabolic status of erythrocytes. Recent studies have exploited this new technology and provided novel insight into erythrocyte physiology and pathology. In particular, a series of studies focusing on erythrocyte purinergic signaling have reported that adenosine signaling, coupled with 5' AMP-activated protein kinase (AMPK) and the production of erythrocyte-enriched bioactive signaling lipid sphingosine 1-phosphate, regulate erythrocyte glucose metabolism for more O2 delivery. Moreover, an adenosine-dependent "erythrocyte hypoxic memory" was discovered that provides an explanation for fast acclimation upon re-ascent. These findings not only shed new light on our understanding of erythrocyte function and hypoxia adaptation, but also offer a myriad of novel therapeutic possibilities to counteract various hypoxic conditions.
from Physiology via xlomafota13 on Inoreader http://ift.tt/2lgkZSY
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.