Τετάρτη 30 Αυγούστου 2017

Elevated resting H+ current in the R1239H type 1 Hypokalemic Periodic Paralysis mutated Ca2+ channel

Abstract

Missense mutations in the gene encoding the α1 subunit of the skeletal muscle voltage-gated Ca2+ channel induce type 1 Hypokalemic Periodic Paralysis, a poorly understood neuromuscular disease characterized by episodic attacks of paralysis associated with low serum K+. The present study aimed at identifying the changes in muscle fibre electrical properties induced by acute expression of the R1239H Hypokalemic Periodic Paralysis human mutant α1 subunit of Ca2+ channels in a mature muscle environment to better understand the pathophysiological mechanisms involved in this disorder. We transferred genes encoding wild-type and R1239H mutant human Ca2+ channels into hind limb mouse muscle by electroporation and combined voltage-clamp and intracellular pH measurements on enzymatically dissociated single muscle fibres. As compared to fibres expressing wild-type α1 subunits, R1239H mutant expressing fibres displayed Ca2+ currents of reduced amplitude and a higher resting leak inward current that was increased by external acidification. External acidification also produced intracellular acidification at a higher rate in R1239H fibres and inhibited inward rectifier K+ currents. These data indicate that the R1239H mutation induces an elevated leak H+ current at rest flowing through a gating pore created by the mutation and that external acidification favors onset of muscle paralysis by potentiating H+ depolarizing currents and inhibiting resting inward rectifier K+ currents. Our results could thus explain why paralytic attacks preferentially occur during the recovery period following intense muscle exercise.

This article is protected by copyright. All rights reserved



from Physiology via xlomafota13 on Inoreader http://ift.tt/2vqS2IO
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.