Abstract
Flowers are often viewed by bee pollinators against a variety of different backgrounds. On the Australian continent, backgrounds are very diverse and include surface examples of all major geological stages of the Earth's history, which have been present during the entire evolutionary period of Angiosperms. Flower signals in Australia are also representative of typical worldwide evolutionary spectral adaptations that enable successful pollination. We measured the spectral properties of 581 natural surfaces, including rocks, sand, green leaves, and dry plant materials, sampled from tropical Cairns through to the southern tip of mainland Australia. We modelled in a hexagon colour space, how interactions between background spectra and flower-like colour stimuli affect reliable discrimination and detection in bee pollinators. We calculated the extent to which a given locus would be conflated with the loci of a different flower-colour stimulus using empirically determined colour discrimination regions for bee vision. Our results reveal that whilst colour signals are robust in homogeneous background viewing conditions, there could be significant pressure on plant flowers to evolve saliently-different colours to overcome background spectral noise. We thus show that perceptual noise has a large influence on how colour information can be used in natural conditions.
from Physiology via xlomafota13 on Inoreader http://ift.tt/2qOIsZI
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.