Δευτέρα 8 Αυγούστου 2016

Epigenetic regulation of the formyl peptide receptor 2 gene

Publication date: October 2016
Source:Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, Volume 1859, Issue 10
Author(s): Felice Simiele, Antonio Recchiuti, Sara Patruno, Roberto Plebani, Anna Maria Pierdomenico, Marilina Codagnone, Mario Romano
Lipoxin (LX) A4, a main stop signal of inflammation, exerts potent bioactions by activating a specific G protein-coupled receptor, termed formyl peptide receptor 2 and recently renamed ALX/FPR2. Knowledge of the regulatory mechanisms that drive ALX/FPR2 gene expression is key for the development of innovative anti-inflammatory pharmacology. Here, we examined chromatin patterns of the ALX/FPR2 gene. We report that in MDA-MB231 breast cancer cells, the ALX/FPR2 gene undergoes epigenetic silencing characterized by low acetylation at lysine 27 and trimethylation at lysine 4, associated with high methylation at lysine 27 of histone 3. This pattern, which is consistent with transcriptionally inaccessible chromatin leading to low ALX/FPR2 mRNA and protein expression, is reversed in polymorphonuclear leukocytes that express high ALX/FPR2 levels. Activation of p300 histone acetyltransferase and inhibition of DNA methyltransferase restored chromatin accessibility and significantly increased ALX/FPR2 mRNA transcription and protein levels in MDA-MB231 cells, as well as in pulmonary artery endothelial cells. In both cells types, changes in the histone acetylation/methylation status enhanced ALX/FPR2 signaling in response to LXA4. Collectively, these results uncover unappreciated epigenetic regulation of ALX/FPR2 expression that can be exploited for innovative approaches to inflammatory disorders.



from Genetics via xlomafota13 on Inoreader http://ift.tt/2aznGFb
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.