Τετάρτη 10 Οκτωβρίου 2018

Propofol Regulates Neural Stem Cell Proliferation and Differentiation via Calmodulin-Dependent Protein Kinase II/AMPK/ATF5 Signaling Axis

BACKGROUND: Propofol can cause degeneration of developing brain cells and subsequent long-term learning or memory impairment. However, at the early stage of embryonic development, the molecular mechanism of propofol-induced inhibition in neural stem cells (NSCs) neurogenesis is still unclear. The aim of this study was to determine the role of propofol in NSCs neurogenesis and, more importantly, to explore the underlying mechanism. METHODS: First, a single intraperitoneal injection of propofol was performed in pregnant mice, and 6 hours after administration of propofol, the hippocampus RNA and the protein of the embryos' brains was extracted to analyze the expression of neuron-specific markers. Second, the primary NSCs were isolated from the hippocampus of mouse embryonic brain and then treated with propofol for cell viability, immunostaining, and transwell assays; more importantly, we performed RNA sequencing (RNA-seq) and q-reverse transcription polymerase chain reaction assays to identify genes regulated by propofol; the Western blot, small interfering RNA (SiRNA), and luciferase reporter assays were used to study the effects of propofol on calmodulin-dependent protein kinase (CaMk) II/5' adenosine monophosphate-activated protein kinase (AMPK)/activating transcription factor 5 (ATF5) signaling pathway. RESULTS: Our results indicated that propofol treatment could inhibit the proliferation, migration, and differentiation of NSCs. The results of RNA-seq assays showed that propofol treatment resulted in downregulation of a group of Ca2+-dependent genes. The following mechanism studies showed that propofol regulates the proliferation, differentiation, and migration of NSCs through the CaMkII/phosphorylation of serine at amino acid position 485 (pS485)/AMPK/ATF5 signaling pathway. CONCLUSIONS: The results from study demonstrated that propofol inhibits the proliferation, differentiation, and migration of NSCs, and these effects are partially mediated by CaMkII/pS485/AMPK/ATF5 signaling pathway. Accepted for publication August 30, 2018. Funding: This research was supported by National Natural Science Foundation of China (Grant No. 81400930). The authors declare no conflicts of interest. Supplemental digital content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal's website (https://ift.tt/KegmMq). Reprints will not be available from the authors. Address correspondence to Jing Cang, MD, Department of Anesthesiology, Zhongshan Hospital, Fudan University, Xuhui Qu, Shanghai Shi 200032, China. Address e-mail to cangjing1998@126.com. © 2018 International Anesthesia Research Society

from Anaesthesiology via xlomafota13 on Inoreader https://ift.tt/2QNA9dF
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.