Τετάρτη 11 Οκτωβρίου 2017

Radioactive and stable cesium isotope distributions and dynamics in Japanese cedar forests

S0265931X.gif

Publication date: Available online 11 October 2017
Source:Journal of Environmental Radioactivity
Author(s): Vasyl Yoschenko, Tsugiko Takase, Thomas G. Hinton, Kenji Nanba, Yuichi Onda, Alexei Konoplev, Azusa Goto, Aya Yokoyama, Koji Keitoku
Dynamics of the Fukushima-derived radiocesium and distribution of the natural stable isotope 133Cs in Japanese cedar (Cryptomeria japonica D. Don) forest ecosystems were studied during 2014–2016. For the experimental site in Yamakiya, Fukushima Prefecture, we present the redistribution of radiocesium among ecosystem compartments during the entire observation period, while the results obtained at another two experimental site were used to demonstrate similarity of the main trends in the Japanese forest ecosystems. Our observations at the Yamakiya site revealed significant redistribution of radiocesium between the ecosystem compartments during 2014–2016. During this same period radionuclide inventories in the aboveground tree biomass were relatively stable, however, radiocesium in forest litter decreased from 20 ± 11% of the total deposition in 2014 to 4.6 ± 2.7% in 2016. Radiocesium in the soil profile accumulated in the 5-cm topsoil layers. In 2016, more than 80% of the total radionuclide deposition in the ecosystem resided in the 5-cm topsoil layer.The radiocesium distribution between the aboveground biomass compartments at Yamakiya during 2014–2016 was gradually approaching a quasi-equilibrium distribution with stable cesium. Strong correlations of radioactive and stable cesium isotope concentrations in all compartments of the ecosystem have not been reached yet. However, in some compartments the correlation is already strong. An increase of radiocesium concentrations in young foliage in 2016, compared to 2015, and an increase in 2015–2016 of the 137Cs/133Cs concentration ratio in the biomass compartments with strong correlations indicate an increase in root uptake of radiocesium from the soil profile. Mass balance of the radionuclide inventories, and accounting for radiocesium fluxes in litterfall, throughfall and stemflow, enabled a rough estimate of the annual radiocesium root uptake flux as 2 ± 1% of the total inventory in the ecosystem.



from Radiology via xlomafota13 on Inoreader http://ift.tt/2ycgsq0
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.