Τρίτη 4 Ιουλίου 2017

Shape automatic clustering-based multi-objective optimization with decomposition

Abstract

In this paper, a new shape automatic clustering method based on multi-objective optimization with decomposition (MOEA/D-SAC) is proposed, which aims to find the final cluster number k as well as an optimal clustering result for the shape datasets. Firstly, an improved shape descriptor based on the shape context is proposed to measure the distance between shapes. Secondly, the diffusion process is applied to transform the similarity distance matrix among total shapes of a dataset into a weighted graph, where the shapes and their distance are regarded as nodes and weight of edges, respectively. Thirdly, a new clustering method called “the soft clustering” is devised, starting with constructing an adjacency graph which can maintain the edges with the weights of k-nearest-neighbor nodes. Then, a multi-objective evolutionary algorithm with decomposition (MOEA/D) is applied to achieve automatic graph clustering scheme. The proposed clustering algorithm has been used to cluster several shape datasets, including four kimia datasets and a well-known MPEG-7 dataset, and experimental results show that the proposed method can demonstrate competitive clustering results.



from #ENT-AlexandrosSfakianakis via ola Kala on Inoreader http://ift.tt/2tn3RLH

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.